
Beating the System: CoolBars –
The Route To Ultra-Cool Apps
by Dave Jewell

Yes, yes, I know. Last month, I
mentioned the possibility of

devoting some more time to the
COM-based interfaces inside the
Windows95 and NT 4.0 shell, but
I’ve decided to defer that a bit
longer. Having just spent the last
couple of days getting Delphi to
work with CoolBars, I thought it
would be really “cool” if I showed
how to add CoolBars to your own
Delphi programs.

So What’s A CoolBar?
If you’ve got a copy of Microsoft’s
Internet Explorer 3.0 installed on
your system, then you’ve already
seen CoolBars in action. Take a
look at Figure 1 where you can see
Internet Explorer displaying the
Web page at

http://www.borland.com/bdc96/
 keynotes/delphi.html

Incidentally, the reason I mention
this Web page specifically is be-
cause it’s an official Borland Web
page that provides quite a bit of
interesting information on the up-
coming Delphi97 product. It’s a
keynote speech put together by
Anders Hejlsberg (sadly, no longer
with Borland) and Zack Urlocker.
Enjoy!

Anyway, I digress. If you look at
the screen shot, you’ll see that
there are three separate rows, or
‘bands’ of controls between the
menu bar at the top of the window
and the client area proper. This is
what Microsoft have christened a
CoolBar. Yes, it’s a ghastly name,
but don’t let it put you off...

A CoolBar is basically a con-
tainer: it contains one or more
other controls, just like a property
sheet or a group box. To be strictly
accurate, what a CoolBar really
contains is one or more bands and
it’s the bands, in turn, that contain
the controls you place into them.

As you’ll know if you’ve played
around with Internet Explorer, you
can place all the bands on one row,
individually resize them and pull
the CoolBar ‘down’ so as to in-
crease the number of available
rows.

The CoolBar control is imple-
mented inside the COMCTL32.DLL:
it’s this Windows system compo-
nent which implements most of the
functionality of the Common Con-
trols library. If you’ve used Visual
Basic much, you’ll know that it
comes with a set of OCX controls
which purport to be ActiveX con-
trols; in actual fact, the ActiveX
components are just wrappers
around this library. In the code pre-
sented in this month’s column, you
must have the new COMCTL32.DLL
library in order for things to work.
If Internet Explorer 3.0 (or later) is
installed, then you’re in business.
On my system, COMCTL32.DLL is
dated 15th October 1996, and it’s
379,152 bytes long.

I first discovered that the Cool-
Bar was implemented in the
COMCTL32.DLL (and so accessible
to other applications) when I read

about it in the October 1996 issue
of Microsoft Systems Journal. Since
all magazines have a lead time of at
least several weeks, it followed that
the author of this article must have
had ‘inside information’. Such was
indeed the case: the article was
authored by a support engineer
within Microsoft. Armed with this
information, I thought that it would
be fun to build a Delphi application
that used the CoolBar control.
However, when I examined the ar-
ticle in more detail (and down-
loaded the accompanying source
code) I discovered that the all im-
portant header files were missing.
It was obviously time to reach for
my trusty Windows dis-assembler.

Unfortunately, this sort of situ-
ation isn’t by any means unusual.
As with the CTL3D library, Mi-
crosoft have a history of adding
new user interface features to their
applications some time before tell-
ing other developers how to access
those same capabilities. Well,
that’s their prerogative, but having
had the stick dangled in front of
me, I was determined to get my
hands on the carrot...

➤ Figure 1: Here’s Microsoft Explorer sporting a CoolBar complete with
several ‘bands’ of components. This may look tricky, but actually it’s
very easy: especially when you do it the Delphi way!

22 The Delphi Magazine Issue 18

CoolBars Step By Step
The first step in creating a CoolBar
is to call the new InitCommonCon-
trolsEx API routine. Like most of
the constants and structure defini-
tions I’m using in this article, the
declaration for this routine hasn’t
yet made it into Delphi’s
COMMCTRL unit. Consequently,
you must use the declaration that
I’ve provided below. This is a criti-
cally important routine because it
initialises the COMCTL32 library
ready for use by your application.
The InitCommonControlsEx entry
point doesn’t exist in older ver-
sions of the library, which means
that if you try and run my code on
an older system, the Windows EXE
loader will refuse to start the appli-
cation, complaining that there’s an
undefined dynalink reference.

If you go ahead and build a Cool-
bar application based around the
code I’ve included here, then you
need to ask yourself whether the
program might inadvertently be
executed on a system that doesn’t
have the new COMCTL32 library.
Just letting the system display an
error message about undefined
dynalinks isn’t very user-friendly.

A better solution is to link to
InitCommonControlsEx at run time
rather than at link time. You could
do that by using the GetProcAddress
API routine to determine if the
required routine is exported by the
library. If you need more help with
this, look at the way in which VCL
interfaces with the CTL3D32 li-
brary (hint: open the FORMS.PAS
file and search for LoadLibrary).

The InitCommonControlsEx rou-
tine is similar to the old InitCommon-
Controls API call, except that it
takes a pointer to a simple data
structure. This structure contains
a series of bit flags which tell the
Common Controls library which
window classes are going to be
used by the application. Doing
things like this is more efficient,
because the library code only
needs to initialise the window
classes that are going to be used.
With the old system, everything
was initialised, whether used or
not.

You can see my CoolBar demo
application running in Figure 2.

This has pretty much the same
functionality as the original Micro-
soft sample application except
that, because it’s written in Delphi
instead of barefoot C, there’s a
great deal less source code to
worry about. Listing 1 shows the
source code to the CoolBar unit
which implements the real meat of
the code. It needs to be said at the
outset that this isn’t exactly a gen-
eral purpose unit: it’s “hard-wired”
to add specific controls to the Cool-
Bar. I’ll explain later how to make
things more general purpose.

What might surprise you about
Microsoft’s CoolBar control is the
fact that you can only place a single
control into each band. This isn’t at
all clear from the aforementioned
article but I came to this conclu-
sion after a certain amount of ex-
perimentation. The reason that
Internet Explorer appears to be
able to place several buttons into a
single band is because it’s using
another type of control, ToolBar-
Window32, which is also imple-
mented through the COMCTL32
library. Internet Explorer first cre-
ates a toolbar, fills it full of buttons
and then places a single toolbar
control into each band.

There are only two interface rou-
tines to the CoolBar unit: AddCool-
Bar which adds a CoolBar control

to a designated window, and Align-
CoolBar which forces the control to
one of the four sides of the parent
window. The AddCoolBar routine
kicks off by initialising a windows
style word according to the type of
CoolBar that’s required: horizontal
or vertical. It then calls the
CreateWindowEx routine which actu-
ally creates the child window, us-
ing the passed window handle as
the parent. The choice of parent is
important since, as with all Win-
dows child windows, its the parent
window which receives notifica-
tion messages sent by the child.
Finally, if the window creation call
was successful, then the Populate-
CoolBar and AlignCoolBar routines
are called to populate the CoolBar
with controls and align it to the
desired position.

The AddCoolBar routine receives
three parameters which provide
IDs for the CoolBar itself, and for
the combo box and control button
that are created. Why are these IDs
important? The reason is that, with
the largely API-level implementa-
tion of a CoolBar given here, you
need the child ID of a window in
order to figure out which child win-
dow sent the notification. For ex-
ample, if you’ve got five push
buttons in a window, they will each
send WM_COMMAND messages to the

➤ Figure 2: Here’s our first crack at a Delphi program with CoolBar
support. This is essentially a Delphi re-write of Microsoft’s sample
code. Although it looks pretty good, the code is inflexible and you
can’t add arbitrary controls to the CoolBar.

February 1997 The Delphi Magazine 23

unit CoolBar;
interface
{$R *.RES }
uses Messages, Windows, Forms, SysUtils, CommCtrl;
type
 TCoolBarPosition = (cbp_Left, cbp_Top, cbp_Right,
 cbp_Bottom);
function AddCoolBar(Wnd: hWnd; Pos: TCoolBarPosition; id1,
 id2, id3: Integer): hWnd;
procedure AlignCoolBar(CoolBarWnd: hWnd;
 Pos: TCoolBarPosition);
implementation
const
 { Flags for dwICC bitmask in TICCEx record }
 ICC_ListView_Classes = $00000001;
 ICC_TreeView_Classes = $00000002;
 ICC_Bar_Classes = $00000004;
 ICC_TAB_Classes = $00000008;
 ICC_UpDown_Class = $00000010;
 ICC_Progress_Class = $00000020;
 ICC_HotKey_CLASS = $00000040;
 ICC_Animate_CLASS = $00000080;
 ICC_Win95_Classes = $000000FF;
 ICC_Date_Classes = $00000100;
 ICC_UserEx_Classes = $00000200;
 ICC_Cool_Classes = $00000400;
 // Common Control Styles
 CCS_Vert = $00000080;
 CCS_Left = (CCS_VERT or CCS_TOP);
 CCS_Right = (CCS_VERT or CCS_BOTTOM);
 CCS_NoMoveEx = (CCS_VERT or CCS_NOMOVEY);
 RBIM_Style = $00000001;
 RBIM_ImageList = $00000002;
 RBIM_Background = $00000004;
 RBS_ToolTips = $00000100;
 RBS_VarHeight = $00000200;
 RBS_BandBorder = $00000400;
 RBS_FixedOrder = $00000800;
 RBBS_Break = $00000001;
 RBBS_FixedSize = $00000002;
 RBBS_KeepHeight = $00000004;
 RBBS_ChildEdge = $00000004;
 RBBS_Hidden = $00000008;
 RBBS_NoVert = $00000010;
 RBBS_FixedBmp = $00000020;
 RBBIM_Style = $00000001;
 RBBIM_Colors = $00000002;
 RBBIM_Text = $00000004;
 RBBIM_Image = $00000008;
 RBBIM_Child = $00000010;
 RBBIM_ChildSize = $00000020;
 RBBIM_Size = $00000040;
 RBBIM_Background = $00000080;
 RBBIM_Id = $00000100;
 RB_InsertBandA = wm_User +1;
 RB_DeleteBand = wm_User +2;
 RB_GetBarInfo = wm_User +3;
 RB_SetBarInfo = wm_User +4;
 RB_GetBandInfo = wm_User +5;
 RB_SetBandInfoA = wm_User +6;
 RB_SetParent = wm_User +7;
 RB_EraseDark = wm_User +8;
 RB_Animate = wm_User +9;
 RB_InsertBandW = wm_User +10;
 RB_SetBandInfoW = wm_User +11;
 RB_GetBandCount = wm_User +12;
 RB_GetRowCount = wm_User +13;
 RB_GetRowHeight = wm_User +14;
 RB_InsertBand = RB_InsertBandA;
 RB_SetBandInfo = RB_SetBandInfoA;
 RBN_HeightChange = -831;
 ReBarClassName = ’ReBarWindow32’;
type
 TICCEx = record
 dwSize: DWord;
 dwFlags: DWord;
 end;
 TRebarInfo = record
 cbSize: UInt;
 fMask: UInt;
 fStyle: UInt;
 himl: HImageList;
 hbmBack: HBitmap;
 end;
 TRebarBandInfo = record
 cbSize: UInt;
 fMask: UInt;
 fStyle: UInt;
 clrFore: TColorRef;
 clrBack: TColorRef;
 lpText: PChar;
 cch: UInt;
 iImage: Integer;
 hWndChild: hWnd;
 cxMinChild: UInt;
 cyMinChild: UInt;
 cx: UInt;
 hbmBack: hBitmap;
 wID: UInt;
 end;
function InitCommonControlsEx(var ICCRec: TICCEx): Boolean;
 stdcall; external ’COMCTL32.DLL’;

procedure CoolBarInit;
var ICCRec: TICCEx;
begin
 ICCRec.dwSize := sizeof(ICCRec);
 ICCRec.dwFlags := ICC_Cool_Classes;
 InitCommonControlsEx(ICCRec);
end;
procedure AlignCoolBar(CoolBarWnd: hWnd;
 Pos: TCoolBarPosition);
var rcForm, rcCoolBar: TRect;
 x, y, width, height: Integer;
begin
 GetClientRect(CoolBarWnd, rcCoolBar);
 GetClientRect(GetParent(CoolBarWnd), rcForm);
 if Pos = cbp_Right then
 x := rcForm.right - rcCoolBar.right
 else
 x := 0;
 if Pos = cbp_Bottom then
 y := rcForm.bottom - rcCoolBar.bottom
 else
 y := 0;
 if Pos in [cbp_Left, cbp_Right] then
 width := rcCoolBar.right
 else
 width := rcForm.right;
 if Pos = cbp_Bottom then
 height := rcCoolBar.bottom
 else
 height := rcForm.Bottom;
 MoveWindow(CoolBarWnd, x, y, width, height, True);
end;
procedure AddBand1(CoolBarWnd: hWnd; idCombo: Integer);
var
 rc: TRect;
 i: Integer;
 style: DWord;
 hWndCombo: hWnd;
 rbbi: TRebarBandInfo;
 szBuff: array [0..100] of Char;
begin
 { Create a combo box and fill it with junk }
 style := ws_Visible or ws_Child or ws_Border or
 ws_ClipChildren or ws_ClipSiblings or ws_TabStop or
 ws_VScroll;
 style := style or cbs_DropDown or cbs_AutoHScroll;
 hWndCombo := CreateWindow(’combobox’, Nil, style,
 0, 0, 100, 200, CoolBarWnd, idCombo, hInstance, Nil);
 for i := 0 to 24 do
 SendMessage(hWndCombo, cb_AddString, 0,
 LongInt(StrPCopy(szBuff, Format(’Item %d’, [i+1]))));
 FillChar(rbbi, sizeof(rbbi), 0);
 GetWindowRect(hWndCombo, rc);
 with rbbi do begin
 cbSize := sizeof(rbbi);
 fMask := RBBIM_Child or RBBIM_ChildSize or RBBIM_Id or
 RBBIM_Style or RBBIM_Colors or RBBIM_Text or
 RBBIM_Background;
 cxMinChild := rc.right - rc.left;
 cyMinChild := rc.bottom - rc.top;
 clrFore := GetSysColor(Color_BtnText);
 clrBack := GetSysColor(Color_BtnFace);
 fStyle := RBBS_ChildEdge or RBBS_FixedBmp;
 wID := idCombo;
 hwndChild := hWndCombo;
 lpText := ’ComboBox’;
 hbmBack := LoadBitmap(hInstance, PChar(1));
 iImage := 0;
 end;
 SendMessage(CoolBarWnd, RB_InsertBand, -1, LongInt(@rbbi));
end;
procedure AddBand2(CoolBarWnd: hWnd; idButton: Integer);
var
 rc: TRect;
 hWndButton: hWnd;
 rbbi: TRebarBandInfo;
begin
 { Create a button control }
 hWndButton := CreateWindow(’Button’, ’Button’, WS_Child or
 BS_PushButton, 0, 0, 100, 50, CoolBarWnd, idButton,
 hInstance, Nil);
 FillChar(rbbi, sizeof(rbbi), 0);
 GetWindowRect(hWndButton, rc);
 with rbbi do begin
 cbSize := sizeof(rbbi);
 fMask := RBBIM_Child or RBBIM_ChildSize or RBBIM_Id or
 RBBIM_Style or RBBIM_Colors or RBBIM_Text or
 RBBIM_BackGround;
 cxMinChild := rc.right - rc.left;
 cyMinChild := rc.bottom - rc.top;
 clrFore := GetSysColor(COLOR_BtnText);
 clrBack := GetSysColor(COLOR_BtnFace);
 fStyle := RBBS_ChildEdge or RBBS_FixedBmp;
 wID := idButton;
 hwndChild := hWndButton;
 lpText := ’Button’;
 hbmBack := LoadBitmap(hInstance, PChar(1));
 end;
 SendMessage(CoolBarWnd, RB_InsertBand, -1, LongInt(@rbbi));
end;
{ *** CONTINUED ON FACING PAGE *** ——> }

24 The Delphi Magazine Issue 18

parent window whenever they’re
pressed. The parent window uses
the child ID (sent as part of the
WM_COMMAND message) to discrimi-
nate between the different push
buttons, between any other child
controls and between different
menu selections. This sort of stuff
is usually behind the scenes as far
as the Delphi VCL programmer is
concerned, but we need to deal
with it here.

PopulateCoolBar just calls a cou-
ple of other routines: AddBand1 and
AddBand2. You add a control to the
CoolBar by first filling in a data
structure which describes a band,
placing the control into the band
and then inserting the band into
the CoolBar. To see how this
works, take a look at the code for
AddBand1. This creates a combo box
using the CoolBar as the parent
window and using the window ID
specified by idCombo. The combo
box is filled with some junk string
items and a data structure of type
TRebarBandInfo is then initialised.
I’ll explain the meaning of the vari-
ous fields in this data structure as
we work through the code.

As with most recently intro-
duced data structures, cbSize
specifies the size of the whole data
structure. This value is checked in-
ternally by the control library to
ensure that both parties agree re-
garding the version of data struc-
ture in use! The fMask field contains
a large number of bit flags, each of
which is set to True to indicate that
an associated field is valid. Thus,
you set RBBIM_Child if you’re speci-
fying a window handle in hWndChild,
RBBIM_ChildSize if you’re setting
cxMinChild or cyMinChild, and so
on. These last two fields allow you

to set minimum horizontal and ver-
tical values for a child window.
This is important where you don’t
want a child window to be shrunk
less than a certain amount. The
clrBack and clrFore fields allow
you to specify a background colour
for the band and a foreground col-
our for any text that will be drawn
on the band. The lpText field is
used to specify display text to be
included in the band.

The bit flags to the fStyle field
have a significant effect on the
appearance of the CoolBar. I’ve
used two flags here: RBBS_ChildEdge
tells the control library to draw a
border around each control. With-
out this flag, the top and bottom
edges of the button control would
be right next to the top and bottom
of the bands, which would look un-
pleasant.

The RBBS_FixedBmp flag is used in
conjunction with the hbmBack bit-
map which is used to specify a
background bitmap for the band.
You can see this used in Internet
Explorer where a ‘squiggly-line’
bitmap is drawn behind all four
bars [Oh, so that’s how Microsoft
intended it? Yeukh! Editor]. The
RBBS_FixedBmp flag tells the control
library to draw the bitmap as a sin-
gle, unbroken image running
through all the bands. If the bitmap
doesn’t fill the area occupied by all
the bands it is tiled. As a corollary
to this, resizing an individual band
doesn’t move the underlying bit-
map. When the RBBS_FixedBmp flag
isn’t set, the bitmap moves along
with the band. Finally, the
RB_InsertBand message is sent to
the CoolBar, passing it the address
of the TRebarBandInfo data struc-
ture. This adds the band to the
CoolBar.

The AlignCoolBar routine is
straightforward enough. It simply

calculates the X, Y, Width and Height
parameters for the CoolBar win-
dow for each of the four possible
alignment positions. The Windows
API MoveWindow routine is then
called to move the CoolBar to its
new position.

Coolness In Action
Listing 2 shows the form unit from
which the CoolBar code is called.
The window handle of the CoolBar
is stored as a private variable in the
form’s class declaration, as is the
current alignment position. When
the form is created, the FormCreate
handler gets triggered. This calls
the CoolBarInit routine, passing it
an initial alignment value of
cbp_Top. This value is stored and
then the AddCoolBar routine is
called, passing it the three ID val-
ues for the different controls that
are required.

It’s important that the CoolBar is
notified each time the parent
window size changes. If this wasn’t
done, the CoolBar would (for exam-
ple) remain the same length as the
form was widened. It’s easy to do
this with Delphi: just define a
FormResize routine and call Align-
CoolBar from inside the event
handler.

The original Microsoft code in-
cluded a small menu which allows
the user to set the CoolBar position
by making one of four choices. I’ve
included this functionality into the
sample program but, once again,
the equivalent Delphi code is a frac-
tion of the size of the original (ok,
ok, that’s enough gratuitous pro-
Delphi propaganda!) A simple and
convenient technique for discrimi-
nating between multiple menu
items is to use the Tag field. From
an efficiency point of view, this is
much, more efficient than writing
your menu handler like this:

{ *** CONTINUED FROM FACING PAGE *** }
procedure PopulateCoolBar(
 CoolBarWnd: hWnd; id2, id3: Integer);
begin
 AddBand1(CoolBarWnd, id2);
 AddBand2(CoolBarWnd, id3);
end;
function AddCoolBar(Wnd: hWnd; Pos: TCoolBarPosition; id1,
 id2, id3: Integer): hWnd;
var style: DWord;
begin
 style := ws_Visible or ws_Child or ws_Border or
 ws_ClipChildren or ws_ClipSiblings;
 style := style or RBS_ToolTips or RBS_VarHeight or

 rbs_BandBorder;
 style := style or CCS_NoDivider or CCS_NoParentAlign;
 if Pos in [cbp_Left, cbp_Right] then
 style := style or CCS_Vert;
 Result := CreateWindowEx(ws_ex_ToolWindow, ReBarClassName,
 Nil, style, 0, 0, 200, 100, Wnd, id1, hInstance, Nil);
 if Result <> 0 then begin
 PopulateCoolBar(Result, id2, id3);
 AlignCoolBar(Result, Pos);
 end;
end;
{ Initialisation code for the unit }
begin
 CoolBarInit;
end.

➤ Facing page and below:
Listing 1

February 1997 The Delphi Magazine 25

if Sender = MenuItem1 then
 ...
else if Sender = MenuItem2 then
 ...
else if Sender = MenuItem3 then
 ... [etc]

The Left1Click handler is shared
by all four menu items. It simply
examines the tag field to see if it
agrees with the current CoolBar
alignment position. If not, the exist-
ing CoolBar is destroyed and then
recreated in the new position. The
AlignmentClick routine is called
whenever the top-level alignment
menu item is clicked. This happens
immediately before the alignment
menu is displayed. This is a good
place to add the code which checks
or un-checks menu items accord-
ing to the current alignment
setting.

Finally, the WMCommand routine
receives WM_COMMAND messages for
the main form. This includes notifi-
cation messages sent from the
combo box and the button in the
CoolBar. The routine checks for
messages for these controls by
looking at the ItemId field of the
TWMCommand data structure and, if
appropriate, displays a dialog box
to indicate that a notification was
received. The WMCommand handler
also receives messages from the
menu items, but these are handled
by calling the inherited handler at
the end of the routine.

Doing It The Delphi Way
At this point, you’re maybe think-
ing ‘Ok, but so what?’. After all, I’ve
shown you how to create controls
on the fly using the API and how to
hard-wire them into a CoolBar. The
API way of doing things means that
you have to muck around with con-
trol IDs and event notifications,
rather than simply writing event
handlers in the normal way. Is
there are a better, more Delphi-
compatible way of doing things?

Well, yes, there is. It turns out
that it’s very easy to modify the
AddBand code I’ve presented so
that, instead of creating an on the
fly API control, you pass a TWinCon-
trol parameter instead. Within the
AddBand code, you can obtain the
API window handle of the passed

control by using the Handle prop-
erty in the usual way. The beauty
of this scheme is that it immedi-
ately eliminates the restriction of
having only one control per band.
If you want more than one control
in a band, you can just create a
TPanel component in the normal
way at design time, fill it with other
Delphi components and then, at
run time, plug the window handle

of the TPanel into the AddBand rou-
tine. Things look best if you make
your panels borderless. That way,
it really does look as if there are
multiple controls in each band.
Another advantage of this ap-
proach is that because we’re now
using Delphi VCL components, we
can just implement ordinary event
handlers instead of keeping track
of arbitrary numbers of control IDs.

unit coolform;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 ExtCtrls, Menus, Coolbar, Tabs;
type
 TForm1 = class(TForm)
 MainMenu1: TMainMenu;
 Alignment: TMenuItem;
 Left1: TMenuItem;
 Top1: TMenuItem;
 Right1: TMenuItem;
 Bottom1: TMenuItem;
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 procedure AlignmentClick(Sender: TObject);
 procedure Left1Click(Sender: TObject);
 private
 hWndCoolbar: hWnd;
 CoolBarPos: TCoolBarPosition;
 procedure CoolBarInit(Pos: TCoolBarPosition);
 protected
 procedure WMCommand(var Msg: TWMCommand); message wm_Command;
 public
 end;
var Form1: TForm1;
implementation
const
 id_CoolBar = 1111;
 id_Combo = 2222;
 id_Button = 3333;
{$R *.DFM}
procedure TForm1.CoolBarInit(Pos: TCoolBarPosition);
begin
 CoolBarPos := Pos;
 hWndCoolbar := AddCoolBar(Handle, Pos, id_CoolBar, id_Combo, id_Button);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 CoolBarInit(cbp_Top);
end;
procedure TForm1.FormResize(Sender: TObject);
begin
 AlignCoolBar(hWndCoolbar, CoolBarPos);
end;
procedure TForm1.AlignmentClick(Sender: TObject);
begin
 Left1.Checked := CoolBarPos = cbp_Left;
 Top1.Checked := CoolBarPos = cbp_Top;
 Right1.Checked := CoolBarPos = cbp_Right;
 Bottom1.Checked := CoolBarPos = cbp_Bottom;
end;
procedure TForm1.Left1Click(Sender: TObject);
begin
 with Sender as TMenuItem do
 if Ord(CoolBarPos) <> Tag then begin
 DestroyWindow(hWndCoolbar);
 CoolBarInit(TCoolBarPosition(Tag));
 FormResize(Self);
 end;
end;
procedure TForm1.WMCommand(var Msg: TWMCommand);
var Str: String;
begin
 Str := ’’;
 case Msg.ItemID of
 id_Button : Str := ’You clicked the button’;
 id_Combo : if Msg.NotifyCode = cbn_SelChange then
 Str := ’You changed the combo selection’;
 end;
 if Str <> ’’ then
 MessageDlg(Str , mtInformation, [mbOK], 0);
 Inherited;
end;
end.

➤ Listing 2

26 The Delphi Magazine Issue 18

➤ Figure 3: Now we’re motoring! With just a few simple changes, it’s
possible to incorporate an entire Delphi Panel component into the
CoolBar, complete with any subsidiary components it might contain.

The proof of the pudding is in the
eating, and you can see the pud-
ding being consumed in Figure 3.
This is a rather whimsical user
interface which demonstrates two
bands, each populated with Delphi
components. I’ve removed the
CoolBar alignment functionality
from this second sample program
because TPanel controls don’t look
particularly impressive when
squashed into a vertical CoolBar.
This means that if anything the
code is shorter than it was before.

This month’s companion disk
includes two ZIP files: COOL1.ZIP
and COOL2.ZIP. The first ZIP file
contains the API-level code pre-
sented in Listings 1 and 2. The sec-
ond ZIP file contains the simplified,
Delphi-compatible code that I’ve
just been discussing. Both ZIP files
include complete Delphi projects
and executables. Don’t expand
both ZIP files into the same direc-
tory because they use the same
filenames: the one will overwrite
the other.

I suspect that Borland will pro-
vide support for CoolBars in
Delphi97, but if you can’t wait for
Delphi97, or you’re happy to stay
with Delphi 2, then the code pre-
sented here will help you easily
incorporate CoolBars into your
own applications. Do remember
my opening caveat though: if
there’s any doubt about the ver-
sion of COMCTL32.DLL installed on
the host system, then you should
be sure to include this re-
distributable file in your setup
script.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJew-
ell@aol.com or 102354,1572 on
CompuServe

February 1997 The Delphi Magazine 27

	So What’s A CoolBar?
	CoolBars Step By Step
	Coolness In Action
	Doing It The Delphi Way

